Author |
Message |
|
Greetings All,
Following some discussions on the GFN1-12 Discord server about values of b for which there are likely no primes of the form b2n+1, we turned to the opposite case where a given b value may result in a long progression of prime values with increasing n.
The known minimum values for which all numbers of the form b2n+1 are prime from n=0 to n=a were as follows, with no further terms know:
a(0): b=2
a(1): b=2
a(2): b=2
a(3): b=2
a(4): b=2
a(5): b=7072833120
a(6): b=2072005925466
Our resident GFN wizard, Yves, wrote a series of programs to efficiently sieve and test b values to search for the a(7) term and we are happy to announce that the search was successful! After ~ 75 CPU-days, the following term was found, and confirmed to be the lowest b for which b2n+1 is prime for all n from 0 to 7.
a(7): b=240164550712338756
So, with that, we would love to find a solution for n=8, however we have reached a point where a small search is unlikely to find a solution for n=8, as that is a few orders of magnitude more difficult. Solutions for n=9 or n=10 are each that much more difficult again. However; these are not outside of the range of a distributed project, and the computational effort required for n=10 is comparable to that of the AP27 search, especially if a GPU implementation is created.
This is an exciting revival of an old search, and I hope that we are able to add more to the maximum progression length in the future!
Regards,
Kellen |
|
|
|
Really nice, and I see you are adding it to https://oeis.org/A090872.
Well done by Yves!
Here are the eight primes (not that I think the readers are idiots, just to celebrate them):
240164550712338756 + 1
240164550712338756^2 + 1
240164550712338756^4 + 1
240164550712338756^8 + 1
240164550712338756^16 + 1
240164550712338756^32 + 1
240164550712338756^64 + 1
240164550712338756^128 + 1
The last two are so-called titanic primes (at least 1000 decimal digits).
Would be crazy if a longer chain of this sort could be found.
/JeppeSN |
|
|
|
Really nice, and I see you are adding it to https://oeis.org/A090872.
Well done by Yves!
Here are the eight primes (not that I think the readers are idiots, just to celebrate them):
240164550712338756 + 1
240164550712338756^2 + 1
240164550712338756^4 + 1
240164550712338756^8 + 1
240164550712338756^16 + 1
240164550712338756^32 + 1
240164550712338756^64 + 1
240164550712338756^128 + 1
The last two are so-called titanic primes (at least 1000 decimal digits).
Would be crazy if a longer chain of this sort could be found.
/JeppeSN
"Fermat-ic" Progression of n primes :D lol
Also:
This is an exciting revival of an old search, and I hope that we are able to add more to the maximum progression length in the future!
Revival?
____________
My lucky number is 6219*2^3374198+1
|
|
|
|
This is an exciting revival of an old search, and I hope that we are able to add more to the maximum progression length in the future!
Revival?
Yep! https://www.primepuzzles.net/puzzles/puzz_137.htm. Most recent term added May 10, 2007 after Yves discovered the first 6 :) |
|
|
Michael Goetz Volunteer moderator Project administrator
 Send message
Joined: 21 Jan 10 Posts: 13804 ID: 53948 Credit: 345,369,032 RAC: 3,564
                              
|
dannyridel wrote: "Fermat-ic" Progression of n primes :D lol
I was thinking they could be called "Gallot Numbers" (or "Kellen Numbers"? I don't know the history of these), but Fermatic Progression is actually kind of good.
____________
My lucky number is 75898524288+1 |
|
|
|
dannyridel wrote: "Fermat-ic" Progression of n primes :D lol
I was thinking they could be called "Gallot Numbers" (or "Kellen Numbers"? I don't know the history of these), but Fermatic Progression is actually kind of good.
We have been calling them "GFP" for short, but if they were going to get a named series I vote for Gallot Numbers :)
Yves = Interested in GFP + Big Brain + All the hard work
Kellen = Interested in GFP + Lots of CPU cores ;) |
|
|
Yves GallotVolunteer developer Project scientist Send message
Joined: 19 Aug 12 Posts: 712 ID: 164101 Credit: 305,166,630 RAC: 0

|
GFP is great, because it can be Generalized or Gallot ;-)
If we read Fermat's letter, this progression is in the same vein.
He built the sequence 21, 22, 23, ... and added one. He proved that they are composite if the exponent is not in the sequence (i.e. a power of two) and he thought that the other ones were primes because he didn't find their divisors.
Here the sequence is b1, b2, b3, ... Similarly bn + 1 is composite is n is not a power of two. We try to replace 3, 5, 17, 257 with a longer sequence of primes. |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
I agree, Gallot numbers, really interesting and incredibly cool. 😎
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Greetings Folks,
Lots of stuff going on with this search still, so it is probably a good time for an update.
The nomenclature has been sorted out a little more officially, as it can be a little confusing with the progressions starting from b20. We have settled into "GFP-" followed by a number indicating the length of the progression, rather than the maximum value of n in the final term of the progression.
To use the original find as an example:
24016455071233875620+1 (240164550712338756 + 1)
24016455071233875621+1 (240164550712338756^2 + 1)
24016455071233875622+1 (240164550712338756^4 + 1)
24016455071233875623+1 (240164550712338756^8 + 1)
24016455071233875624+1 (240164550712338756^16 + 1)
24016455071233875625+1 (240164550712338756^32 + 1)
24016455071233875626+1 (240164550712338756^64 + 1)
24016455071233875627+1 (240164550712338756^128 + 1)
This is a GFP-8, indicating a progression of length 8, despite the final term being b27.
With that sorted out; on to some real news.
Yves made specialized versions of his GFP programs to search for GFP of different lengths, and computed the first 1000 b values which result in a GFP-5, the first 148 b values which result in a GFP-6 and the first set of GFP-7 b values. Rob computed the remaining GFP-7 b values so that we have the first 101 known, and I finished off GFP-6 to 1000 values.
These sequences, or updates to existing sequences, have now been submitted to OEIS by JeppeSN and are in various stages of approval. They can be found at the following links:
GFP-5 (i = 0...4): https://oeis.org/A070694
GFP-6 (i = 0...5): https://oeis.org/A235390
GFP-7 (i = 0...6): https://oeis.org/A335805
The comments have not been approved yet, so they are not showing up, but the astute will notice that GFP-5 term #173 corresponds to the first GFP-6 and GFP-6 term #148 corresponds to the first GFP-7. We are working to determine the total number of GFP-7 to the first GFP-8, however the computation involved is significant and this will take some time.
The GFP-8 search also continues and should be completed to software limits (b=264) in the next few weeks. There should be ~5 more GFP-8 in this range, so there will be a new OEIS sequence shortly for those as well!
From here the search gets significantly more involved as sieve efficiency and search complexity, which have increased relatively uniformly, decouple. The search for the first GFP-9 term is a substantial undertaking (estimate of 275,000 core-days, compared to the 75 it took to find the first GFP-8).
We will see where this takes us and report back with news and progress updates when things happen :)
Regards,
Kellen |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
For those who are interested, the search continues :)
Progress so far .....
GFP-8 progressions:
1
240164550712338756
3686834112771042790
6470860179642426900
7529068955648085700
10300630358100537120
16776829808789151280
17622040391833711780
19344979062504927000
More coming soon ;)
GFP-9 May require assistance however, on a Boinc level. :)
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found a few more GFP-8s
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Found a few more GFP-8s
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
Beautifully done Rob! This is turning into quite the collection. The gap between the last two is pretty large too; hopefully that means that the next one is nearby :) |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Cheers Kellen
Just for fun I wanted to examine the last one :)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^1+1" -d -t4
46598149026149325546^1+1 is prime! (20 decimal digits, APRCL test)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^2+1" -d -t4
46598149026149325546^2+1 is prime! (40 decimal digits, APRCL test)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^4+1" -d -t4
46598149026149325546^4+1 is prime! (79 decimal digits, APRCL test)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^8+1" -d -t4
46598149026149325546^8+1 is prime! (158 decimal digits).
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^16+1" -d -t4
46598149026149325546^16+1 is prime! (315 decimal digits)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^32+1" -d -t4
46598149026149325546^32+1 is prime! (630 decimal digits)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^64+1" -d -t4
46598149026149325546^64+1 is prime! (1259 decimal digits)
C:\Primes\LLR2\single>cllr64.exe -q"46598149026149325546^128+1" -d -t4
46598149026149325546^128+1 is prime! (2518 decimal digits)
These are fun. Stay tuned for more. :)
The search for a GFP-9 continues.......
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found another GFP-8 ;)
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Found another GFP-8 ;)
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
b is climbing fast!
____________
My lucky number is 6219*2^3374198+1
|
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found another GFP-8 ;)
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
b is climbing fast!
350P/Day I think
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
Yves GallotVolunteer developer Project scientist Send message
Joined: 19 Aug 12 Posts: 712 ID: 164101 Credit: 305,166,630 RAC: 0

|
b is climbing fast!
The expected number of GFP-n in [2, B] is Gn * Integ[x = 2, B] dx/log(x)n,
where G8 = 3.6414e-6 and G9 = 2.1045e-7.
Then 22 GFP-8 are expected in [2, 1e20].
The value for the expected smallest GFP-9 is 8.7e21 which is about 893 GFP-8, but the probability doesn't make sense for a single sequence. It just means that a GFP-9 is a reasonable attempt.
The first GFP-10 could be around 2,000,000 GFP-8. |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
JeppeSN kindly updated here https://oeis.org/A337364
Thanks Jeppe :)
15 down, only 878 to go. Easy Peasy ;P
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found another GFP-8 ;)
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
b is climbing fast!
I checked. It's 475P/day :)
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Napkin Math. I'm getting on average one every 10 days, so it will take 24 years to get a GFP-9 if it's at the far end. Hrmph :(
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Napkin Math. I'm getting on average one every 10 days, so it will take 24 years to get a GFP-9 if it's at the far end. Hrmph :(
Likely the most important event of 2045. I see nothing listed on Wikipedia: 3rd millennium § 2040s. /JeppeSN |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found another GFP-8
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Found another GFP-8
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Another GFP-8
Nicely done Rob! You're really cranking these out!
How far do you plan on going, or is this a "GFP-9 or Bust" situation? You're coming up on 1% of the depth where 1 GFP-9 is expected, so it isn't unrealistic to find one at the rate you're going.
Perhaps once the WW search has come to a close we could get this search here on PrimeGrid and go for a GFP-10 or higher :)
|
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Thanks Kellen.
Nah not really a a "GFP-9 or Bust" situation but I need a distraction/hobby at the moment and you never know :P
Not sure when I'll stop. It would be cool to have PG take it over alright. A snail becomes a Cheetah instantly. :D
But I'll bring it to 100,000P at least anyway, .....nearly there, maybe more :P
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
https://oeis.org/A337364
Uploading new b-file there. /JeppeSN |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
https://oeis.org/A337364
Uploading new b-file there. /JeppeSN
Thanks Jeppe :)
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
1 1
2 240164550712338756
3 3686834112771042790
4 6470860179642426900
5 7529068955648085700
6 10300630358100537120
7 16776829808789151280
8 17622040391833711780
9 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Wow, nicely done! Also; that is a huge gap between the last two terms; nice to see you continued past 100,000P ;) |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
28 120575824375626308640
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
28 120575824375626308640
29 132184876532412857116
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26
|
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another two GFP-8s real close together after a big gap.
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
28 120575824375626308640
29 132184876532412857116
30 154531016796119938150
31 154906933814720289676
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
|
Nice. That OEIS entry is being updated; I submitted longer b-file. /JeppeSN |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Nice. That OEIS entry is being updated; I submitted longer b-file. /JeppeSN
Thanks JeppeSN 👍
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8.
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
28 120575824375626308640
29 132184876532412857116
30 154531016796119938150
31 154906933814720289676
32 160780102680429087450
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|
robish Volunteer moderator Volunteer tester
 Send message
Joined: 7 Jan 12 Posts: 2139 ID: 126266 Credit: 6,786,311,048 RAC: 2,827,188
                             
|
Another GFP-8.
01 1
02 240164550712338756
03 3686834112771042790
04 6470860179642426900
05 7529068955648085700
06 10300630358100537120
07 16776829808789151280
08 17622040391833711780
09 19344979062504927000
10 23949099004395080026
11 25348938242408650240
12 30262840543567048476
13 35628481193915651646
14 46598149026149325546
15 51730769081270463240
16 56592054138859807480
17 60908454029873490346
18 67486058769233442280
19 68196870174015196636
20 74305870466559949830
21 75947457137714226636
22 81391144780594380576
23 86924816748713954676
24 90510623782794727750
25 96829546940791024816
26 111273606813164116780
27 117859986707090344516
28 120575824375626308640
29 132184876532412857116
30 154531016796119938150
31 154906933814720289676
32 160780102680429087450
33 164084406728273859916
https://oeis.org/A337364
____________
My lucky numbers 10590941048576+1 and 224584605939537911+81292139*23#*n for n=0..26 |
|
|