Hi Ian,
below are the results from my iMac running 10.6.7 (http://www.primegrid.com/show_host_detail.php?hostid=178104) [1]
as well as my Linux machine running Ubuntu 11.04 (http://www.primegrid.com/show_host_detail.php?hostid=205321) [2].
It looks like both tests completed without any errors.
[1]
Genefer80 2.2.0 (x86 - 32-bit - 80-b X87) Copyright (C) 2001-2003, Yves Gallot
Copyright 2009, Mark Rodenkirch, David Underbakke
Copyright 2011, Iain Bethune (Mac OS X/Linux)
A program for finding large probable generalized Fermat primes.
10234^64+1 is composite. (RES=e99e17786d3bacc2) (257 digits) (err = 0.0000) (time = 0:00:00) 11:27:44
10032^128+1 is composite. (RES=1d9767ae8d652d65) (513 digits) (err = 0.0000) (time = 0:00:00) 11:27:44
584328^256+1 is composite. (RES=32798be013527165) (1477 digits) (err = 0.0000) (time = 0:00:00) 11:27:44
419000^512+1 is composite. (RES=fee1d2c0894a662f) (2879 digits) (err = 0.0000) (time = 0:00:00) 11:27:44
352220^1024+1 is composite. (RES=6c7ebc76febe0583) (5680 digits) (err = 0.0000) (time = 0:00:01) 11:27:45
366672^2048+1 is composite. (RES=fd37a864102cf81e) (11396 digits) (err = 0.0000) (time = 0:00:02) 11:27:47
285064^4096+1 is composite. (RES=f81ed37ab6df33f9) (22344 digits) (err = 0.0000) (time = 0:00:12) 11:27:59
230234^8192+1 is composite. (RES=5972a302c255e081) (43927 digits) (err = 0.0000) (time = 0:00:54) 11:28:53
151902^16384+1 is composite. (RES=0a1a98e69b17f1e9) (84895 digits) (err = 0.0000) (time = 0:03:37) 11:32:30
177444^32768+1 is a probable composite. (RES=f69cc3e2334a43a8) (172002 digits) (err = 0.0000) (time = 0:15:16) 11:47:46
157476^65536+1 is a probable composite. (RES=9f64b3f0d545615c) (340605 digits) (err = 0.0000) (time = 1:08:58) 12:56:44
52186^131072+1 is composite. (RES=1b196d6c0e4d778f) (618340 digits) (err = 0.0000) (time = 4:59:51) 17:56:35
70000^262144+1 is a probable composite. (RES=fa15b4b858fd2ff0) (1270114 digits) (err = 0.0000) (time = 20:36:25) 14:33:00
[2]
Genefer80 2.2.0 (x86 - 32-bit - 80-b X87) Copyright (C) 2001-2003, Yves Gallot
Copyright 2009, Mark Rodenkirch, David Underbakke
Copyright 2011, Iain Bethune (Mac OS X/Linux)
A program for finding large probable generalized Fermat primes.
10234^64+1 is composite. (RES=e99e17786d3bacc2) (257 digits) (err = 0.0000) (time = 0:00:00) 11:35:12
10032^128+1 is composite. (RES=1d9767ae8d652d65) (513 digits) (err = 0.0000) (time = 0:00:00) 11:35:12
584328^256+1 is composite. (RES=32798be013527165) (1477 digits) (err = 0.0000) (time = 0:00:00) 11:35:12
419000^512+1 is composite. (RES=fee1d2c0894a662f) (2879 digits) (err = 0.0000) (time = 0:00:00) 11:35:12
352220^1024+1 is composite. (RES=6c7ebc76febe0583) (5680 digits) (err = 0.0000) (time = 0:00:00) 11:35:12
366672^2048+1 is composite. (RES=fd37a864102cf81e) (11396 digits) (err = 0.0000) (time = 0:00:03) 11:35:15
285064^4096+1 is composite. (RES=f81ed37ab6df33f9) (22344 digits) (err = 0.0000) (time = 0:00:12) 11:35:27
230234^8192+1 is composite. (RES=5972a302c255e081) (43927 digits) (err = 0.0000) (time = 0:00:57) 11:36:24
151902^16384+1 is composite. (RES=0a1a98e69b17f1e9) (84895 digits) (err = 0.0000) (time = 0:03:44) 11:40:08
177444^32768+1 is a probable composite. (RES=f69cc3e2334a43a8) (172002 digits) (err = 0.0000) (time = 0:15:22) 11:55:30
157476^65536+1 is a probable composite. (RES=9f64b3f0d545615c) (340605 digits) (err = 0.0000) (time = 1:06:14) 13:01:44
52186^131072+1 is composite. (RES=1b196d6c0e4d778f) (618340 digits) (err = 0.0000) (time = 4:35:06) 17:36:50
70000^262144+1 is a probable composite. (RES=fa15b4b858fd2ff0) (1270114 digits) (err = 0.0000) (time = 19:37:17) 13:14:07
Hope this helps,
Phil |