On 28 Feb 2012, 15:51:22, PrimeGrid's 27121 Prime Search, through PRPNet and in collaboration with the 12121 Search (k=27 sister project), has found the mega prime:

\[27 \times 2^{3855094} - 1 \]

The prime is 1,160,501 digits long and will enter Chris Caldwell's "The Largest Known Primes Database" (http://primes.utm.edu/primes) ranked 34th overall. This is PrimeGrid's 23rd mega prime.

The discovery was made by Pietari Snow of Finland using an Intel Xeon E5410 @ 2.33GHz with 12GB RAM, running Microsoft Windows Server 2003 x64. This computer took just over 4 hours 13 minutes to complete the primality test using LLR. Pietari is a member of the PrimeSearchTeam.

The prime was verified on 28 Feb 2012, by an Intel Core i7 2600k @3.4Ghz with 8 GB RAM, running Windows 7 x64. This computer took a little over 1 hours 25 minutes to complete the primality test using LLR x64 AVX.

Credits for the discovery are as follows:

1. Pietari Snow (Finland), discoverer
3. Srsieve, sieving program developed by Geoff Reynolds
4. PSieve, sieving program developed by Ken Brazier and Geoff Reynolds
5. LLR, primality program developed by Jean Penné

Entry in "The Largest Know Primes Database" can be found here: http://primes.utm.edu/primes/page.php?id=105209

PrimeGrid's 27121 Prime Search is a collaboration with the 12121 Search, which was established on 5/24/2004 to search for large primes of the form 121*2^n-1. Later, on 3/1/2005, they added k=27 to their search. Their "short term" goal is to search for n up to 10M. PrimeGrid added the +1 form and searches both k's and forms together.

Using a single PC would have taken years to find this prime. So this timely discovery would not have been possible without the thousands of volunteers who contributed their spare CPU cycles. A special thanks to everyone who contributed their advice and/or computing power to the search - especially all the sievers who work behind the scenes to make a find like this possible.

This is PrimeGrid's 23rd mega prime. The 27121 Prime Search will continue to seek even larger primes. To join the search please visit PrimeGrid: http://www.primegrid.com
About PrimeGrid

PrimeGrid is a distributed computing project, developed by Rytis Slatkevičius, Lennart Vogel, and John Blazek, which utilizes BOINC and PRPNet to search for primes. PrimeGrid's primary goal is to bring the excitement of prime finding to the "everyday" computer user. Simply download the software and let your computer do the rest. Participants can choose from a variety of prime forms to search. With a little patience, you may find a large or even record breaking prime.

BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) is a software platform for distributed computing using volunteered computer resources. It allows users to participate in multiple distributed computing projects through a single program. Currently BOINC is being developed by a team based at the University of California, Berkeley led by David Anderson.

This platform currently supports projects from biology to math to astronomy. For more information, please visit BOINC: http://boinc.berkeley.edu

PRPNet

PRPNet is a client/server application written by Mark Rodenkirch that is specifically designed to help find prime numbers of various forms. It is easily ported between various OS/hardware combinations. PRPNet does not run each PRP test itself, but relies on helper programs, such as LLR, PFGW, phrot, wwww, and genefer to do the work.

For more information, please visit PrimeGrid's PRPNet forum thread: http://www.primegrid.com/forum_thread.php?id=1215

For more information about PrimeGrid and a complete list of available prime search projects, please visit: http://www.primegrid.com